
1

Interrupts & Input/Output

Chapter 12

S. Dandamudi

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 2

Interrupts and Input/Output

• What are interrupts?

• Types of interrupts
∗ Software interrupts
∗ Hardware interrupts
∗ Exceptions

• Interrupt processing
∗ Protected mode

∗ Real mode

• Software interrupts
∗ Keyboard services

» int 21H DOS services

» int 16H BIOS services

• Exceptions
∗ Single-step example

• Hardware interrupts
∗ Accessing I/O

∗ Peripheral support chips

• Writing user ISRs

2

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 3

What Are Interrupts?

• Interrupts alter a program’s flow of control
∗ Behaviour is similar to a procedure call

» Some significant differences between the two

• Interrupt causes transfer of control to an interrupt
service routine (ISR)

» ISR is also called a handler

• When the ISR is completed, the original program
resumes execution

• Interrupts provide an efficient way to handle
unanticipated events

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 4

Interrupts versus Procedures

Interrupts
• Initiated by both software

and hardware
• Can handle anticipated

and unanticipated internal
as well as external events

• ISRs or interrupt handlers
are memory resident

• Use numbers to identify
an interrupt service

• (E)FLAGS register is
saved automatically

Procedures
• Can only be initiated by

software
• Can handle anticipated

events that are coded into
the program

• Typically loaded along
with the program

• Use meaningful names to
indicate their function

• Do not save the
(E)FLAGS register

3

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 5

A Taxonomy of Pentium Interrupts

Maskable

Software Interrupts

TrapsAborts Faults

Interrupts

Hardware InterruptsExceptions

Nonmaskable

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 6

Various Ways of Interacting with I/O Devices

Application Program

Input/Output Devices

DOS Support

BIOS Support

4

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 7

Protected Mode Interrupt Processing

• Up to 256 interrupts are supported (0 to 255)
» Same number in both real and protected modes

» Some significant differences between real and protected mode
interrupt processing

• Interrupt number is used as an index into the
Interrupt Descriptor Table (IDT)
∗ This table stores the addresses of all ISRs

∗ Each descriptor entry is 8 bytes long
» Interrupt number is multiplied by 8 to get byte offset into IDT

∗ IDT can be stored anywhere in memory
» In contrast, real mode interrupt table has to start at address 0

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 8

Protected Mode Interrupt Processing (cont’d)

∗ Location of IDT is maintained by IDT register IDTR

∗ IDTR is a 48-bit register
» 32 bits for IDT base address

» 16 bits for IDT limit value

– IDT requires only 2048 (11 bits)

– A system may have smaller number of descriptors

�Set the IDT limit to indicate the size in bytes

» If a descriptor outside the limit is referenced

– Processor enters shutdown mode

∗ Two special instructions to load (lidt) and store
(sidt) IDT

» Both take the address of a 6-byte memory as the operand

5

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 9

Interrupt Processing in Real Mode

• Uses an interrupt vector table that stores pointers
to the associated interrupt handlers.

• This table is located at base address zero.

• Each entry in this table consists of a CS:IP pointer
to the associated ISRs

• Each entry or vector requires four bytes:
∗ Two bytes for specifying CS

∗ Two bytes for the offset

• Up to 256 interrupts are supported (0 to 255).

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 10

Interrupt Vector Table

IP low byte

IP high byte

CS low byte

CS high byte
CS

IP

int type 0

Memory address (in Hex)

IP low byte

IP high byte

CS low byte

CS high byte
CS

IP

IP low byte

IP high byte

CS low byte

CS high byte
CS

IP

IP low byte

IP high byte

CS low byte

CS high byte
CS

IP

int type 255

int type 2

int type 1

00000

00001

00002

00003

00004

00005

00006

00007

00008

00009

0000A

0000B

003FF

003FE

003FD

003FC

6

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 11

Interrupt Number to Vector Translation

• Interrupt numbers range
from 0 to 255

• Interrupt number acts as
an index into the interrupt
vector table

• Since each vector takes 4
bytes, interrupt number is
multiplied by 4 to get the
corresponding ISR pointer

Example
• For interrupt 2, the

memory address is

2 ∗ 4 = 8H

• The first two bytes at 8H
are taken as the offset
value

• The next two bytes (i.e., at
address AH) are used as
the CS value

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 12

A Typical ISR Structure

• Just like procedures, ISRs should end with a return
statement to return control back

• The interrupt return (iret) is used of this purpose
;save the registers used in the ISR

sti ;enable further interrupts

. . .

ISR body

. . .

;restore the saved registers

iret ;return to interrupted program

7

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 13

What Happens When An Interrupt Occurs?

• Push flags register onto the stack

• Clear interrupt enable and trap flags
∗ This disables further interrupts
∗ Use sti to enable interrupts

• Push CS and IP registers onto the stack

• Load CS with the 16-bit data at memory address
interrupt-type ∗ 4 + 2

• Load IP with the 16-bit data at memory address
interrupt-type ∗ 4

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 14

Interrupt Enable Flag Instructions

• Interrupt enable flag controls whether the
processor should be interrupted or not

• Clearing this flag disables all further interrupts
until it is set
∗ Use cli (clear interrupt) instruction for this purpose

∗ It is cleared as part interrupt processing

• Unless there is special reason to block further
interrupts, enable interrupts in your ISR
∗ Use sti (set interrupt) instruction for this purpose

8

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 15

Returning From An ISR

• As in procedures, the last instruction in an ISR
should be iret

• The actions taken on iret are:
∗ pop the 16-bit value on top of the stack into IP register

∗ pop the 16-bit value on top of the stack into CS register

∗ pop the 16-bit value on top of the stack into the flags
register

• As in procedures, make sure that your ISR does
not leave any data on the stack (i.e., match your
push and pop operations within the ISR)

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 16

Software Interrupts

• Initiated by executing an interrupt instruction
int interrupt-type

interrupt-type is an integer in the range 0 to
255

• Each interrupt type can be parameterized to
provide several services.

• For example, DOS interrupt service int 21H
provides more than 80 different services
∗ AH register is used to identify the required service

under int 21H.

9

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 17

Example DOS Service: Keyboard

• DOS provides several interrupt services to interact
with the keyboard

• AH register should be loaded with the desired
function under int 21H.

• Seven functions are provided by DOS to read a
character or get the status of the keyboard

» See Section 12.5.2 for details

• We look at one function to read a string of
characters from the keyboard.

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 18

A DOS Keyboard Function

• Function 0AH --- Buffered Keyboard Input
 Inputs: AH = 0AH

 DS:DX = pointer to the input buffer

 (first byte should be buffer size)

Returns: character string in the input buffer

• Input string is terminated by CR

• Input string starts at the third byte of the buffer

• Second byte gives the actual number of characters
read (excluding the CR)

10

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 19

Input Buffer Details

l = maximum number of characters (given as input to

the function)

m = actual number of characters in the buffer excluding

 CR (returned by the function)

Input buffer for character string

l m

0 1 2 3 4 5 6 l l +1_l 1

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 20

A Keyboard Example

• GetStr procedure to
read a string from the
keyboard (see io.mac)

• Expects buffer pointer in
AX and buffer length in
CX

• Uses DOScall macro:

DOScall MACRO fun_num
mov AH,fun_num

int 21H

ENDM

Proc_GetStr ()

Save registers used in proc.

if (CX < 2) then CX := 2

if (CX > 81) then CX := 81

Use function 0AH to read
input string into temp.
buffer str_buffer

Copy input string from
str_buffer to user
buffer and append NULL

Restore registers

11

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 21

BIOS Keyboard Services

• BIOS provides keyboard services under int 16H

• We focus on three functions provided by int 16H
∗ Function 00H --- To read a character

∗ Function 01H --- To check keyboard buffer

∗ Function 02H --- To check keyboard status

• As with DOS functions, AH is used to identify the
required service

• DOS services are flexible in that the keyboard
input can be redirected (BIOS does not allow it)

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 22

BIOS Character Read Function

• Function 00H --- Read a char. from the keyboard
 Inputs: AH = 00H

Returns: if AL is not zero

AL = ASCII code of the key

AH = Scan code of the key

 if AL is zero

AH = Scan code of the extended key

• If keyboard buffer is empty, this function waits for
a key to be entered

12

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 23

BIOS Keyboard Buffer Check Function

• Function 01H --- Check keyboard buffer
 Inputs: AH = 01H

Returns: ZF = 1 if keyboard buffer is empty

 ZF = 0 if not empty

ASCII and Scan codes

are placed in AL and AH

as in Function 00H

• The character is not removed from the keyboard
buffer

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 24

BIOS Keyboard Status Check Function

• Function 02H --- Check
keyboard status

Inputs: AH = 02H

Returns:
AL = status of shift
and toggle keys

• Bit assignment is
shown on the right

Bit# Key assignment

0 Right SHIFT down

1 Left SHIFT down

2 CONTROL down

3 ALT down

4 SCROLL LOCK down

5 NUMBER LOCK down

6 CAPS LOCK down

7 INS LOCK down

13

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 25

A BIOS Keyboard Example

• BIOS, being a lower-level service, provides more
flexibility

• FUNNYSTR.ASM reads a character string from
the keyboard and displays it along with its length

• The input string can be terminated either by
pressing both SHIFT keys simultaneously, or by
entering 80 characters, whichever occurs first.

• We use BIOS function 02H to detect the first
termination condition.

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 26

Display and Printer Support

• Both DOS and BIOS provide support for Printer
and Display screen

• An example DOS int 21H character display
function

Function 02H --- Display a char. to screen
 Inputs: AH = 02H

 DL = ASCII code of the character

 to be displayed

Returns: nothing

• See proc_nwln procedure for usage

14

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 27

Exceptions

• Three types of exceptions
∗ Depending on the way they are reported

∗ Whether or not the interrupted instruction is restarted
» Faults

» Traps

» Aborts

• Faults and traps are reported at instruction
boundaries

• Aborts report severe errors
∗ Hardware errors

∗ Inconsistent values in system tables

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 28

Faults and Traps

• Faults
» Instruction boundary before the instruction during which the

exception was detected

» Restarts the instruction
» Divide error (detected during div /idiv instruction)

» Segment-not-found fault

• Traps
» Instruction boundary immediately after the instruction during

which the exception was detected

» No instruction restart

» Overflow exception (interrupt 4) is a trap

» User defined interrupts are also examples of traps

15

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 29

Dedicated Interrupts

• Several Pentium predefined interrupts --- called
dedicated interrupts

• These include the first five interrupts:
interrupt type Purpose

0 Divide error

1 Single-step

2 Nonmaskable interrupt (MNI)

3 Breakpoint

4 Overflow

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 30

Dedicated Interrupts (cont’d)

• Divide Error Interrupt
∗ CPU generates a type 0 interrupt whenever the div/idiv

instructions result in a quotient that is larger than the
destination specified

• Single-Step Interrupt
∗ Useful in debugging

∗ To single step, Trap Flag (TF) should be set

∗ CPU automatically generates a type 1 interrupt after
executing each instruction if TF is set

∗ Type 1 ISR can be used to present the system state to
the user

16

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 31

Dedicated Interrupts (cont’d)

• Breakpoint Interrupt
∗ Useful in debugging

∗ CPU generates a type 3 interrupt

∗ Generated by executing a special single-byte version of
int 3 instruction (opcode CCH)

• Overflow Interrupt
∗ Two ways of generating this type 4 interrupt

» int 4 (unconditionally generates a type 4 interrupt)

» into (interrupt is generated only if the overflow flag is set)

∗ We do not normally use into as we can use jo/jno
conditional jumps to take care of overflow

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 32

A Single-Step Interrupt Example

• Objectives:
∗ To demonstrate how ISRs can be defined and installed

(i.e., user defined ISRs)

∗ How trap flag can be manipulated
» There are no instruction to set/clear the trap flag unlike the

interrupt enable flag sti/cli

• We write our own type 1 ISR that displays the
contents of AX and BX registers after each
instruction has been executed

17

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 33

Two Services of int 21H

• Function 35H --- Get interrupt vector
 Inputs: AH = 35H

 AL = interrupt type number

Returns: ES:BX = address of the specified ISR

• Function 25H --- Set interrupt vector
 Inputs: AH = 25H

 AL = interrupt type number

 DS:DX = address of the ISR

Returns: nothing

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 34

Hardware Interrupts

• Software interrupts are synchronous events
(caused by executing the int instruction)

• Hardware interrupts are of hardware origin and
asynchronous in nature
∗ Typically caused by applying an electrical signal to the

processor chip

• Hardware interrupts can be
∗ Maskable

∗ Non-maskable
» Causes a type 2 interrupt

18

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 35

How Are Hardware Interrupts Triggered?

• Non-maskable interrupt is triggered by applying
an electrical signal to the MNI pin of Pentium
∗ Processor always responds to this signal

∗ Cannot be disabled under program control

• Maskable interrupt is triggered by applying an
electrical signal to the INTR (INTerrupt Request)
pin of Pentium
∗ Pentium recognizes this interrupt only if IF (interrupt

enable flag) is set

∗ Interrupts can be masked or disabled by clearing IF

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 36

How Does the CPU Know the Interrupt Type?

• Interrupt invocation process is common to all
interrupts -- whether originated in software or
hardware

• For hardware interrupts, CPU initiates an interrupt
acknowledge sequence
∗ CPU sends out interrupt acknowledge (INTA) signal

∗ In response, interrupting device places interrupt type
number on the data bus

∗ CPU uses this number to invoke the ISR that should
service the device (as in software interrupts)

19

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 37

How can More Than One Device Interrupt?

• Processor has only one INTR pin to receive
interrupt signal

• Typical system has more than one device that can
interrupt --- keyboard, hard disk, floppy, etc.

• Use a special chip to prioritize the interrupts and
forward only one interrupt to the CPU

• 8259 Programmable Interrupt Controller chip
performs this function (more details later)

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 38

Direct Control of I/O Devices

• Two ways of mapping I/O ports:
∗ Memory-mapped I/O (e.g., Motorola 68000)

» I/O port is treated as a memory address (I/O port is mapped to
a location in memory address space (MAS))

» Accessing an I/O port (read/write) is similar to accessing a
memory location (all memory access instructions can be used)

∗ Isolated I/O (e.g., Pentium)
» I/O address space is separate from the memory address space

– leaves the complete MAS for memory

» Separate I/O instructions and I/O signals are needed

» Can’t use memory access instructions
» Can also use memory-mapped I/O and use all memory access

instructions

20

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 39

Pentium I/O Address Space

• Pentium provides 64 KB of I/O address space
∗ Can be used for 8-, 16-, and 32-bit I/O ports

• Combination cannot exceed the total I/O space
∗ 64K 8-bit I/O ports

» Used for 8-bit devices, which transfer 8-bit data

» Can be located anywhere in the I/O space

∗ 32K 16-bit I/O ports (used for 16-bit devices)
» 16-bit ports should be aligned to an even address

∗ 16K 32-bit I/O ports (used for 32-bit devices)
» Should be aligned to addresses that are multiples of four

» Pentium supports unaligned ports, but with performance penalty

∗ A combination of these for a total of 64 KB

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 40

Pentium I/O Instructions

• Pentium provides two types of I/O instructions:
∗ Register I/O instructions

» used to transfer data between a register (accumulator) and an
I/O port

» in - to read from an I/O port

» out - to write to an I/O port

∗ Block I/O instructions
» used to transfer a block of data between memory and an I/O

port
» ins - to read from an I/O port

» outs - to write to an I/O port

21

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 41

Register I/O Instructions

• Can take one of two forms depending on whether
a port is directly addressable or not

– A port is said to be directly addressable if it is within the
first 256 ports (so that one byte can be used specify it)

• To read from an I/O port
in accumulator,port8 -- direct addressing format

 port8 is 8-bit port number

in accumulator,DX -- indirect addressing format
 port number should be loaded into DX

accumulator can be AL, AX, or EAX (depending on I/O port)

• To write to an I/O port
out port8,accumulator -- direct addressing format
out DX,accumulator -- indirect addressing format

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 42

Block I/O Instructions

• Similar to string instructions
• ins and outs do not take any operands

• I/O port address should be in DX
∗ No direct addressing format is allowed

• ins instruction to read from an I/O port
» ES:(E)DI should point to memory buffer

• outs instruction to write to an I/O port
» DS:(E)SI should point to memory buffer

• rep prefix can be used for block transfer of data
as in the string instructions

22

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 43

I/O Device Interface

CONTROL BUS

DATA BUS

ADDRESS BUS

STATUS

COMMAND

DATA

I/O CONTROLLER

I/O DEVICE

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 44

8259 Programmable Interrupt Controller

• 8259 can service up to eight hardware devices
∗ Interrupts are received on IRQ0 through IRQ7

• 8259 can be programmed to assign priorities in
several ways
∗ Fixed priority scheme is used in the PC

» IRQ0 has the highest priority and IRQ7 lowest

• 8259 has two registers
∗ Interrupt Command Register (ICR)

» Used to program 8259

∗ Interrupt Mask Register (IMR)

23

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 45

8259 PIC (cont’d)

8259

PIC

IRQ0

IRQ1

IRQ2

IRQ3

IRQ4

IRQ5

IRQ6

IRQ7

INTR

INTA

8-bit data bus

CPU

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 46

8259 PIC (cont’d)

• Mapping in a single 8259 PIC systems
 IRQ# Interrupt type Device

0 08H System timer

1 09H Keyboard

2 0AH reserved (2nd 8259)

3 0BH Serial port (COM1)

4 0CH Serial port (COM2)

5 0DH Hard disk

6 0EH Floppy disk

7 0FH Printer (LPT1)

24

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 47

8259 PIC (cont’d)

• Interrupt Mask Register (IMR) is an 8-bit register
∗ Used to enable or disable individual interrupts on lines

IRQ0 through IRQ7
» Bit 0 is associated with IRQ0, bit 1 to IRQ1, . . .

» A bit value of 0 enables the corresponding interrupt (1
disables)

• Processor recognizes external interrupts only
when the IF is set

• Port addresses:
∗ ICR: 20H

∗ IMR:21H

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 48

8259 PIC (cont’d)

Example: Disable all 8259 interrupts except the
system timer

mov AL,0FEH

out 21H,AL

• 8259 needs to know when an ISR is done (so that
it can forward other pending interrupt requests)
∗ End-of-interrupt (EOI) is signaled to 8259 by writing

20H into ICR
mov AL,20H

out 20H,AL

∗ This code fragment should be used before iret

25

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 49

8255 Programmable Peripheral Interface Chip

• Provides three 8-bit registers (PA, PB, PC) that
can be used to interface with I/O devices

• These three ports are configures as follows:
PA -- Input port

PB -- Output port

PC -- Input port

• 8255 also has a command register
• 8255 port address mapping

PA --- 60H

PB --- 61H

PC --- 62H

Command register --- 63H

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 50

Keyboard Interface

• PA and PB7 are used for keyboard interface
∗ PA0 -- PA6 = key scan code

∗ PA7 = 0 if a key is depressed

∗ PA7 = 1 if a key is released

• Keyboard provides the scan code on PA and waits
for an acknowledgement
∗ Scan code read acknowledge signal is provided by

momentarily setting and clearing PB7
» Normal state of PB7 is 0

• Keyboard generates IRQ1
» IRQ1 generates a type 9 interrupt

26

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 51

Polling Versus Interrupts

• Using interrupts to service I/O requests is called
interrupt-driven I/O

• An alternative is programmed I/O
∗ Repeatedly checks the status of an I/O device (through

a status register of the associated I/O controller) until
the desired condition is indicated

∗ This process is called polling

• Interrupt-driven I/O is efficient
» Can be used to handle unanticipated events

• Polling involves overhead
» Can be used to handle only anticipated event

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Interrupts & I/O: Page 52

Polling Overhead for Bubble Sort Example

So
rt

 ti
m

e
(s

ec
on

ds
)

Number of elements

0

5

10

15

20

1000 2000 3000 4000 5000 6000 7000 8000

with
 pollin

g co
de

without pollin
g code

