Carleton University, Computer Science, Winter 2018
Comp 3002 Compiler Construction
Course Outline

Introduction:  
A quick review of the components of a compiler: scanner, tree building parser, tree walker for code generation. A quick review of the process of designing a language for which a compiler is to be built.
A quick 1 lecture preview where we design a parser transduction grammar and a scanner transduction grammar for a simple expression language, feed it into a table building program to generate the tables, and implement a compiler for it.  
Scanner/Parsers
A discussion of the details of a table driven scanner/parser and how it works.
The infrastructure for parsers/scanners	
Detailed discussion of finite state machines and regular expressions and their use in transduction grammars. This includes operations such *,+,&,|,-, and . (concatenation). 
Converting a transduction grammar with regular expression right parts into a transduction grammar with FSM right parts.  
This is a tree walking process akin to code generation but used instead in the context of grammar conversion. 
Theoretical underpinnings for transduction grammars
Regular grammars, context free grammars, regular right part grammars, parse trees versus abstract syntax trees, handles, regular right part transductions grammars, LL(k) versus LR(k) grammars.
Constructing tables for regular right part grammars
	More than shift-reduce tables; specifically, how to construct readahead FSMs for finding the right end of a handle, readback FSMs for finding the left end of a handle, and semantic action states for tree building along with their conversion into table format for use by scanner/parsers. Overview of the process followed by detailed coverage.
Symbol tables
Techniques for dealing with scoping in typical programming languages.
Code Generation Basics
	Machine versus virtual machine instruction sets. Code generation basics for virtual machine instruction sets. The distinction between expression contexts which requires a value on the virtual machine stack versus statement contexts which do not with several examples of language constructs that can be in used in both contexts.
More advanced code generation
Dealing with if statements, while loops, for loops. Dealing with short circuit boolean operations such as &&, ||, and ! which DO NOT require the use of And, Or, or Not virtual machine instructions.
Other Topics
Chain reduction optimizations for parsers. Non-canonical parsers.

